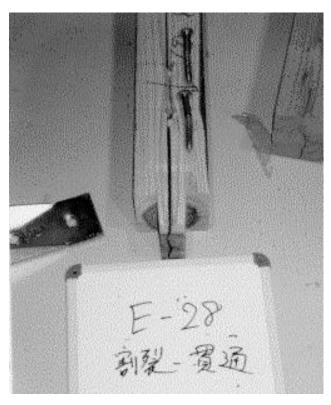
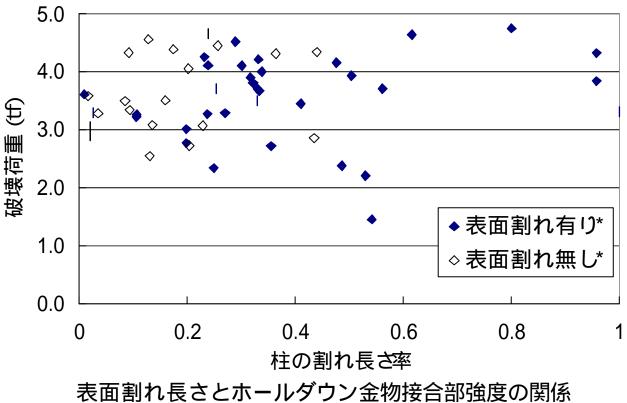


4)ホールダウン金物接合部引抜き


• 供試体

乾燥材(A~E) 先穴有り 計54体

乾燥材(A~E) 先穴無し 計45体



破壊性状

[結果]

- ・先穴を開けないとラグスクリュー打込み時に割れが発生し極端な強度低下をもたらす。HD-B10 の許容荷重(10kN)を下回るものも有り、ホールダウン金物を使う意味が無い。先穴を開けずに使用するのは論外であり**木質構造設計規準**にしたがうことが望ましい。
- ・先穴を開けた試験体は全て HD-B10 の短期許容耐力(1tf) を上回っており、その観点から見れば割れは影響が無いとい うことが出来る。
- ・表面割れ長さ率、最大割れ開きと強度の相関性は見られない。 また、打込み面および反対面の表面割れの有無による差は認 められない。ただし、強度が低いものから順番に並べると、 下から 4 番目までは表面割れが存在しており、全く影響が無 いと言い切ることはできない。

5.0 **\$** \Diamond 4.0 破壊荷重 (竹) 3.0 Ī 1 2.0 ◆ 表面割れ有り* 1.0 ◇ 表面割れ無し* 0.0 2 10 0 4 6 8 12 最大割れ開き

*ラグスクリューを打込んだ面および反対面の割れの有無

表面割れ開きとホールダウン金物接合部強度の関係

ホールダウン金物引抜き強度

Akute Profestura. College of Agriculture

単位 tf

試験条件		全体	割れ有り*	割れ無し*	打込み時破 壊
先穴有り	個数	54	34	20	0
	平均値.	3.57	3.54	3.62	
	標準偏差	0.72	0.74	0.69	
	変動係数(%)	20.0	20.8	19.1	
	最小値	1.45	1.45	2.54	
先穴無し	個数	45	14	31	3
	平均值.	2.70	2.51	2.79	
	標準偏差	0.73	0.92	0.622	
	変動係数(%)	27.0	36.7	22.3	
	最小値	0.64	0.64	1.21	

^{*}ラグスクリューを打込んだ面および反対面の割れの有無

先穴無しの場合。打込み時の割れ

(参考)

胴部の先穴は胴部の径と同径、長さも同部と同寸とするねじ部の先穴 樹種グループJ1:ねじ径の60~75%

その他:ねじ径の40~70%

長さは少なくともねじ部の長さと同じにする

(「木質構造設計規準・同解説 日本建築学会発行」 より)